

Mechanics 2.10.

Particles on a slope (with Friction)

mc-web-mech2-10-2009

Here, as in leaflet 2.7, particles on a slope are considered, but this time including friction.

Worked Example 1.

If a particle, of mass M kg, is on the point of slipping down a rough plane that is inclined at an angle θ to the horizontal, what is the coefficient of friction?

Solution

Resolving perpendicular to the plane:

$$R = Mq\cos\theta$$

Resolving parallel to the plane:

$$F = Mg\sin\theta$$

As the particle is on the point of slipping, friction is limiting, $F = F_{MAX}$, so:

$$F = \mu R$$

$$Mg \sin \theta = \mu \times Mg \cos \theta$$

$$\frac{Mg \sin \theta}{Mg \cos \theta} = \mu$$

$$\tan \theta = \mu$$

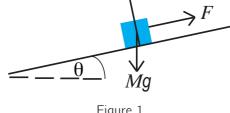


Figure 1

Note:
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

This can be written as $\theta = \arctan \mu$; θ is referred to as the **Angle of Friction**.

Worked Example 2.

A box of mass 6 kg is on the point of slipping down a rough slope, which is inclined at an angle 30° to the horizontal. A force S is applied to the box and acts up the plane. Given that the coefficient of friction is 0.45, what is the magnitude of S? (Figure 2 shows the forces acting on the box, when modelled as a particle.)

Solution

Resolving perpendicular to the plane:

$$R = 6q \cos 30^{\circ}$$

Resolving parallel to the plane:

$$F = 6g\sin 30^{\circ} - S$$

As the box is on the point of slipping, friction is limiting, $F = F_{MAX}$, so:

$$F = \mu R$$

$$6g\sin 30^{\circ} - S = 0.45 \times 6g\cos 30^{\circ}$$

$$S = 6g \sin 30^{\circ} - 0.45 \times 6g \cos 30^{\circ} = 6.5 \text{ N (2 s.f.)}$$

www.mathcentre.ac.uk

Figure 2

Worked Example 3.

A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 25° to the horizontal. Given the ski has a mass m kg and the coefficient of sliding friction between the ski and the slope is 0.21, what is the acceleration of the ski? (Figure 3 shows the forces acting on the ski, when modelled as a particle.)

Solution

As the motion is down the slope, the sum of the perpendicular forces equals zero.

Resolving perpendicular to the plane:

$$R = mq \cos 25^{\circ}$$

As the ski is sliding, the frictional force is given by:

$$F = \mu R = 0.21 \times mg \cos 25^{\circ}$$

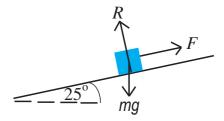


Figure 3

Use Newton's Second Law, parallel to the plane. The resultant force is $mg \sin 25^{\circ} - F$:

$$mg \sin 25^{\circ} - 0.21 \times mg \cos 25^{\circ} = ma$$

 $a = g \sin 25^{\circ} - 0.21 \times g \cos 25^{\circ} = 2.3 \text{ m s}^{-2} \text{ (2 s.f.)}$

Exercises

- 1. If a particle, of mass 11 kg, is on the point of slipping down a rough plane that is inclined at an angle 16° to the horizontal, what is the coefficient of friction?
- 2. A box of mass 5 kg is on the point of slipping down a rough slope, which is inclined at an angle 12° to the horizontal. A force S is applied to the box and acts up the plane. Given friction is acting and the coefficient of friction is 0.12, what is the magnitude of S?
- 3. A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 22° to the horizontal. Given the ski has a mass 2 kg and the coefficient of sliding friction between the ski and the slope is 0.19, what is the acceleration of the ski?
- 4. If a particle, of mass m kg, is on the point of slipping down a rough inclined plane that has a coefficient of friction of 0.14, what is the angle of the incline from the horizontal?
- 5. A box of mass 4 kg is on the point of slipping down a rough slope, which is inclined at an angle 40° to the horizontal. A force S of magnitude $\frac{1}{4}$ R (where R is the normal reaction force) is applied to the box and acts up the plane. Given friction is acting, what is the coefficient of friction?
- 6. A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 15° to the horizontal. Given the ski has a mass m kg and has an acceleration of 1.2 m s $^{-2}$, what is the coefficient of sliding friction between the ski and the slope?

Answers (all to 2 s.f.)

1. 0.29 2. 4.4 N 3. 1.9 m s $^{-2}$ 4. 8.0° 5. 0.59 6. 0.14