Second Order Ordinary Differential Equations
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Introduction

Prerequisites: [n order to make the most of this resource, you need to know about trigonometry,
differentiation, integration and complex numbers.

We are looking at equations involving a function y(x), its first derivative and second derivative:

d’y . dy
a@+b&+cy—f(x) (1)

We will only look at equations where the coefficients a, b and ¢ are constant; we will not treat in
this handout the case of coefficients which are functions of x.

Homogeneous Equations

If f(x) = 0 then the ODE is called an homogeneous equation. To solve a second order homogeneous
, o d¥y d

ODE, we look at the characteristic equation, obtained by replacing d—z, Y and y by r?, r and 1

X

. dx
in the ODE:
ar> +br+c=0

We distinguish between 3 cases: the case when the roots of the characteristic equation are distinct
and real, complex or equal.
Case 1: real and distinct roots r; and r,

Then the solutions of the homogeneous equation are of the form:

y(x) = Ae™* 4 Be™*

The constants A and B can be anything you like if there are no boundary conditions. If you have
boundary conditions, e.g. you know that y(x¢) = « and y’(xg) = 3, then A and B will be uniquely
defined by:

AerlXO+Ber2XO =
AI‘ler1X0+BI'2€r2XO = B

Example
d’y | .dy
——+5—+6y=0
dx? + dx oy
. . —5+V25—4x%x6
The characteristic equation is: 2 + 5r + 6 = 0 and the roots are 5 = -3 or —2.

Therefore the solutions of the ODE are:
y(x) = Ae 3 + Be ¢
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Case 2: complex roots
If the roots are complex then they can be written as r + js and r — js (with j the imaginary number,
j> = —1) and the solutions of the homogeneous equations are of the form:
y(X) — erx (Aejsx 4 Be—jsx)
which can also be written as* = €™ (Ccos(sx) + Dsin(sx))

As before, the constants A and B (or C and D) will be defined by the boundary conditions.

Example
d?y  dy
—— 4+ 4= 4+9y =0
dx? + dx Ty

= —2+/5j or

—4+v16-4x9
2

The characteristic equation is: 12+ 4r +9 = 0 and the roots are
-2 — \/Sj. Therefore the solutions of the ODE are:

y(x) = e = (Ae‘/g"j + Be_‘/ng)

or = e (C cos (V/5x) + D sin (\/5}())

Case 3: equal roots ri=ry=r

If the characteristic equation has one root only then the solutions of the homogeneous equation are
of the form:
y(x) = Ae™ + Bxe™

Example

dy dy

“2 4 4y =0

dx? * dx +
The characteristic equation is: 1> +4r+4 = 0 e.g. (r+2)? = 0 and its root is -2. Therefore the
solutions of the ODE are:

y(x) = Ae™* + Bxe >

Second Order ODEs with Right-Hand Side

If the right-hand side in Equation (1) is not 0, then the solutions can be found as follows:

e First, find the form of the solution of the corresponding homogeneous equation keeping the
constants A and B as such: this is called the complementary solution y.(x);

e Second, find a particular integral of the ODE y,(x).

Then the solutions of the ODE are of the form: y(x) = y.(x) + y,(x). At this point only, you may
determine the constants A and B from the boundary conditions.

There are two methods to find a particular integral of the ODE: the method of undetermined
coefficients and the method of variation of parameters.
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Undetermined coefficients

This method consists in making an educated guess as to what the particular integral should look
like. The following table can be used:

f(x) particular integral
k C

kx Cx+D

kx? Cx>4+Dx+E
ksinx or k cosx Ccosx + Dsinx

k sinh x or k cosh x Ccoshx + Dsinhx
ekx Cekx

e, where r is a root of the Cxe™ or Cx%e™
characteristic equation

The constants C and D are found by ‘plugging’ the particular integral in the ODE, which will lead
to conditions that define C and D.

Example
d?%y dy .
Tz 5& + 6y = 2sin4x
We first find the complementary solution of the ODE. The characteristic equation is 1> —5r4+6 = 0

and the roots are

SEV25-4x%x6
2

= 3 or 2. Therefore the complementary solution is:

Ve(x) = Ae™ 4 Be*™

Then, we find a particular integral of the ODE. Since the right-hand side contains a sin 4x, we look

for a particular integral in the form y,(x) = Ccos4x + Dsin4x. We want y, to be solution of the
ODE so we must have:

d?y dy :
We have:
d
D _ —4C sin 4x + 4D cos 4x
dx
2
Vo _ 16C cosdx — 16D sin 4x
dx2

Putting back in the ODE:

(—16C cos 4x — 16D sin4x) — 5 (—4Csin4x + 4D cos 4x) + 6 (C cos 4x + D sin 4x) = 2sin 4x
Re-arranging cos and sin:

(—16C — 20D + 6C) cos 4x 4+ (—16D + 20C + 6D) sin 4x = 2sin 4x
(—10C — 20D) cos 4x + (—10D + 20C) sin 4x = 2sin 4x

The last equation must be true for any value of x, so we must have:

—10C - 20D =0
20C — 10D =2

=3
D=—1L
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: : : 2 1 :
So a particular integral of the ODE is y,(x) = — cos4x — — sin4x and the general solutions of the

25 25
ODE are of the form: 5 )
y(x) = oF 08 4x — %% sin4x 4+ Ae®* + Be™

Variation of parameters

This method is more general and will work for any function f(x) in the right-hand side of Equation
(1), although it may look intimidating at first sight! First let's rewrite the complementary solution
of the ODE in the form:

Ve(x) = Ayi(x) + Bya(x)
with yq(x) = €™, yo(x) = e or xe"™™ if r; = ry with 1y, 5 roots of the characteristic equation

Then a particular integral of Equation (1) is:

) = 60 [ S gy [ I g

with W the Wronskian: W(yy,v2) = yi(x)y5(x) — v} (X)ya(x)

Example

d? d e*

dx2 dx x2+1
First, let's find the complementary solution of the ODE. The characteristic equation is 12—2r+1 = 0,
e.d. (r—1)2 =0, so there is one root which is 1. The complementary solution is of the form:

Ve(x) = Ae* 4 Bxe*

To find a particular integral of the ODE, we calculate the Wronskian:

X

with: yi(x) =€* and:  ya(x) = xe

W(y,y2) = yi(x)ys(x) = yi(x)ya(x)

= (1 +x)e* — exe* = ™

Then a particular integral of the ODE is:

vp(x) = —€* e ° dx+xex/e— ©

eaxszl e2xx2 +1 x

X X X 1
= —e /X2+1dx+xe /1+X2dx

1 1
/1EX2dX:§ln(1+X2) and /1+X2dxzarctanx

1
= —e°- 5 In (1 + x?) + xe* - arctanx

The general solution of the ODE is:

1
y(x) = Ae* + Bxe™ — §ex In (1 + x%) + xe* arctan x

t:Qc‘ﬂMJ (©Morgiane Richard Shazia Ahmed

www.mathcentre.ac.uk University of Aberdeen University of Glasgow



Exercises

d? d? d :
(a) d—g +Ty =0 (d) = + 4£ + 5y = 2e7 with y(0) = 1, = (0) = —2
%y L dy = &y, dy 2
SR e Yy gy =2
(b)d§+ dé(+y e (6)32+3X—|—y cos” x
y ¥ y y '
Answers
(a)y = Ae'V™ 4 Be VT (d)y = e *(2 — cosx)
or y = Ccos (v/7x) + Dsin (v/7x)
1 1
(b)y = Ae ™ +Bxe * +e = (e)y = (A + Bx)e > + i i§ sin (2x)

(c)y = Ae* + Be V¥ —2x + 7 (f)y = (A +Bx — x%)e ™ + §ex
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